MACROPROCESO: DOCENCIA PROCESO: LINEAMIENTOS CURRICULARES PROCEDIMIENTO: APROBACIÓN Y REVISIÓN DEL PLAN ACADÉMICO EDUCATIVO CONTENIDOS PROGRAMATICOS

Código: D-LC-P02-F01 Versión: 03 Página 1 de 3

	Fecha: Febrero de 2017
PROGRAMA ACADÉMICO: Licenciatura en Matemáticas y Estadística	
SEMESTRE: III	
ASIGNATURA: Álgebra Lineal	
CÓDIGO : 8107657	
NÚMERO DE CRÉDITOS: 4	

PRESENTACIÓN

En Álgebra Lineal se presentan fundamentalmente los conceptos de espacio vectorial y transformaciones lineales entre espacios vectoriales. En el curso se hace un tratamiento básico de estos conceptos, que posteriormente serán utilizados en áreas como la Estadística y el Análisis. Además busca que los estudiantes dominen dos procesos fundamentales en matemáticas: llevar a cabo cálculos matemáticos y desarrollar demostraciones debidamente argumentadas.

JUSTIFICACIÓN

El Álgebra Lineal forma parte esencial de los conocimientos que requieren matemáticos, ingenieros y otros profesionales; por esto, dadas las características y las necesidades de la carrera, las del ejercicio de la profesión, las de los postgrados y las de los procesos de investigación, el estudiante de Licenciatura en Matemáticas y Estadística debe tomar un curso introductorio de Álgebra Lineal para que, además de mejorar sus conocimientos teóricos y su estructura de pensamiento, emplee las herramientas que brinda esta asignatura en el planteamiento y solución de problemas que se puedan describir a través de modelos lineales.

COMPETENCIAS

- Interpretar el concepto de espacio vectorial para aplicarlo a otras áreas de la ciencia.
- Interpretar analítica y geométricamente la relación existente entre transformaciones lineales y matrices.
- Proporcionar argumentos del Álgebra lineal para dar solidez a teoremas y problemas propuestos.
- Aplicar diferentes procedimientos en la solución de problemas.
- Proponer demostraciones para resultados del Álgebra Lineal.

METODOLOGÍA

Se basa en involucrar de manera activa al estudiante en el proceso de aprendizaje. En su trabajo no presencial realizará una lectura previa de los contenidos a tratar en clase y desarrollará actividades planeadas y acordadas en el trabajo presencial.

Para el desarrollo de la clase el profesor expondrá los temas básicos, pero se da la posibilidad que el estudiante haga exposiciones. Se formularán y atenderán preguntas, se tratarán temas afines, se realizarán ejercicios y problemas de aplicación, con el fin de afianzar la comprensión y la utilización de los conceptos y resultados relacionados con los temas estudiados.

También en el acompañamiento directo, los estudiantes podrán sustentar tareas asignadas, lecturas complementarias de profundización, desarrollar talleres tanto individual como en grupo.

MACROPROCESO: DOCENCIA PROCESO: LINEAMIENTOS CURRICULARES PROCEDIMIENTO: APROBACIÓN Y REVISIÓN DEL PLAN ACADÉMICO EDUCATIVO CONTENIDOS PROGRAMATICOS

Código: D-LC-P02-F01 Versión: 03 Página 2 de 3

INVESTIGACIÓN

El estudiante selecciona un tema de su interés de acuerdo con los contenidos desarrollados que le permita profundizar y consolidar los conceptos básicos de la asignatura.

MEDIOS AUDIOVISUALES

- Computador
- Video Beam
- Internet
- · Software especializado.

EVALUACIÓN

EVALUACIÓN COLECTIVA

La evaluación del proceso de aprendizaje será continua y tendrá en cuenta una evaluación colectiva a través de trabajos en grupo o realización de talleres en clase.

EVALUACIÓN INDIVIDUAL

Estará conformada por pruebas de comprensión y análisis, sustentación de ejercicios y seguimiento a consultas y tareas.

Se acordará con los estudiantes el número de parciales escritos para cada cincuenta por ciento.

CONTENIDOS TEMÁTICOS MÍNIMOS

1. Matrices y Sistemas de Ecuaciones Lineales

- 1.1. Definición de Rⁿ, igualdad en Rⁿ, operaciones en Rⁿ, producto escalar entre n-tuplas
- 1.2. Matriz de m x n en un campo
- 1.3. Tipos de matrices, operaciones y propiedades
- 1.4. Sistemas de ecuaciones lineales
- 1.5. Métodos de reducción Gauss y Gauss-Jordan.

2. Determinantes

- 2.1. Desarrollo por cofactores
- 2.2. Propiedades de los determinantes
- 2.3. Determinantes e inversa
- 2.4. Cálculo de la inversa por la adjunta
- 2.5. Regla de Cramer.

3. Vectores Geométricos y Aplicaciones en R² Y R³

- 3.1. Vector geométrico, suma de vectores geométricos
- 3.2. Criterios del paralelismo y colinealidad, teoremas de base y proporción
- 3.3. Aplicaciones a la geometría
- 3.4. Magnitud de un vector, vectores unitarios y ortogonales
- 3.5. Ecuaciones vectorial, paramétrica y simétrica de una recta en el espacio
- 3.6. Ecuación vectorial paramétrica y cartesiana de una recta en el plano
- 3.7. Producto escalar de vectores geométricos, propiedades y aplicaciones
- 3.8. Ángulo entre vectores
- 3.9. Criterio de ortogonalidad y proyección de un vector sobre otro
- 3.10. Cosenos directores de un vector
- 3.11. Proyección ortogonal de un punto sobre una recta y un plano
- 3.12. Simetría de un punto respecto de una recta de un plano.

MACROPROCESO: DOCENCIA PROCESO: LINEAMIENTOS CURRICULARES PROCEDIMIENTO: APROBACIÓN Y REVISIÓN DEL PLAN ACADÉMICO EDUCATIVO CONTENIDOS PROGRAMATICOS

Código: D-LC-P02-F01 Versión: 03 Página 3 de 3

4. Espacios Vectoriales

- 4.1. Definición de espacios v subespacios
- 4.2. Propiedades básicas e introducción de algunos espacios fundamentales
- 4.3. Combinación lineal y espacios generales
- 4.4. Dependencia e independencia lineal
- 4.5. Base, dimensión
- 4.6. Rango, nulidad, espacio de los reglones y espacio de las columnas de una matriz
- 4.7. Rango, nulidad, espacio de los renglones y espacio de las columnas de una matriz
- 4.8. Cambio de base.

5. Transformaciones Lineales

- 5.1. Definiciones y ejemplos de transformaciones lineales y propiedades
- 5.2. Recorrido y núcleo
- 5.3. Representación matricial de una transformación lineal.

6. Valores Propios y Vectores Propios

- 6.1. Valores y vectores propios
- 6.2. Diagonalización de una matriz.

LECTURAS COMPLEMENTARIAS

Comentarios y notas Históricas sobre el Algebra Lineal. Aportes de los diferentes matemáticos al Álgebra Lineal.

BIBLIOGRAFÍA E INFOGRAFÍA

- [1] ACHER, J. (1979). Algebra Lineal y Programación Lineal. Barcelona: M/Simon.
- [2] ANTON, H. (2002). Introducción al Álgebra Lineal. Tercera Edición. México: Limusa.
- [3] APOSTOL, T. (2007). Calculus. Volumen 1. Segunda Edición. Barcelona: Reverté.
- [4] APOSTOL, T. (2007). Calculus. Volumen 2. Segunda Edición. Barcelona: Reverté.
- [5] CHENEY, W. KINCAID D. (2009. *Linear Algebra: Theory and Applications*. Canadá: Jones and Bartlett Publishers.
- [6] DAWKINS, Paul. (2005). *Linear Algebra*. https://www.cs.cornell.edu/courses/cs485/2006sp/LinAlg Complete.pdf
- [7] GROSSMAN, S. I. (2012). Álgebra Lineal. México: McGraw-Hill.
- [8] KOLMAN, B. HILL. D. R. (2006): Álgebra lineal. Octava edición: México: Pearson Education.
- [9] POOLE, D. (2007). Álgebra lineal: Una introducción moderna. Segunda edición. México: Cengage Learning.
- [10] SOTO, M. J. (1995). Álgebra Lineal con Matlab y Maple. P/H.
- [11] SANS, P. y otros. (1998). Álgebra Lineal. Problemas. Madrid. P/H.