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SEISMIC SLOPE SAFETY

In order to analyse theafety of an earth dam (or a slopejluring an earthquake, tl
following information is neede

a) Theinertia forces that will be generated in the d (or slope)y the earthquak

b) Theresistanceof the dan (or slope)against these forces along with the-existing
static forces;

C) The possibleconsequence of failure, when the resistance of the structure is
sufficient to withstand these forces temporarilylowing the development ¢
deformation.

Soils, being a nofinear inelastic material, the three stages abaeeirgerconnected. W
need techniques, like Finite Element Analysis, twlgse such a problem rigorous
However, in a simplified analysis, the three stages dealt with separately andves
reasonable answers.

In the simplified analysis, the inertia for in the first stagare determined by assuming t
soil is a viscoelastic material. The resistance in the seconcestagetermined by assumi
that soil is a rigidly plastic matal. The third stage is determined by using theltesid the
first two.

A) INERTIA FORCES

The determination of the response of a slope teaathquake is quite complica. There is
no analytical solutionto this problen We have analytical solution for a dam w
symmetrical slope and also we have solution foroazbntal layer with no slope It is
generally assumed that the accelerations are saergwehere. However, if more detail
information is required, thelRE aralysis with proper boundary condition is neecFigure 1
shows how a vertically propagating SV wave will producettb horizontal and vertic:
motions in the slope.

Seismic Slope Safety

Figure 1: Wave characteristics in slopes

SV wave traveling from below. The long arrows show the
wave direction, the short arrows show the parficle
motion. The particle motion at any point will be the
combined effect of all waves. (Sarma&Irakleidis 2008)

Figure 1



However, in case of an earth dam, simplifying agsions can be made and reasonable
results can be obtained.

The inertia forces generated during an earthqualkedam or a layer or a slope will depend
on

i) The geometry of the dam
i) The material properties
iii) The earthquake time history.

In order to determine these forces, we formulateathematical model with assumptions.

Assumptions for a damSee figure 2

1) The length of the dam is great compared to #ight. In this case, the presence of the
abutments will not be felt except near the ends4).

2) Slopes of the dam are fairly flat and the seci® symmetrical about the y-axis.
Amount of oscillations due to bending is small. fdfere, subjected to horizontal
loading in shear, the response is assumed to #eeisr only. (Slope <1:1.5) .

With the above assumptions, only the y dimensiod #e shear stress is
pertinent. Therefore, it is callehe-dimensional shear-beananalysis.

3) The wedge is rigidly connected to the base. fididity of the foundation material is
much greater than the dam. (The solution to the olam layer is available as well.)

4) The base is acted upon by an arbitrary dishaban the horizontal direction only.

5) The material in the wedge is homogeneous argtiela
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Figure 2
With the above assumptions, the equation of mot@m be written and solution obtained.
The solution is of the form of sum of response ahspnmodes.

u(y,t)=> @ (N1, (1)

@, gives the nth mode shape apdsl the Du Hamel's Integral for the response ofrale
degree of freedom structure of nth mode frequenbyested to the ground acceleration a(t)
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From the solution (not detailed here), we see ttiatpertinent parameters of the dam are the
following:

a) Height of the dam, H
b) Average shear wave velocity, S
c) Energy loss capacity

The first two parameters combine together to predsmgle parameter, which is the
fundamental period of the dam,
T1=2.61H/S (@H)

All other mode periods are functions of the fundataemode. The slope of the dam does not
come into the picture. Therefore, the two real peaters are Tand A.

[Compare the period of the dam with that of a soil layenathis T:= 4 H/S]

Damping:

In the Voigt type material, the damping factor agaation of the critical becomes directly
proportional to the mode frequency, producing higi@mping in higher modes. Field tests
do not support this finding. It is difficult to sesny consistent trend in the variation of
damping with modes. It is therefore generally ategpo have a constant valueofin all
modes. A is found from cyclic tests on laboratory samplesa equivalent viscous damping
factor which is given as:

A = /(4 AWIW ()

where AW and W are explained in figure 3.
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Figure 3
It is clear from lab tests that both the equivakdmar modulus and the damping are functions

of the strain imposed. We therefore, choose thedees from an average strain expected
during an earthquake.

Response

The response of the dam depends upon

a)Ty b) A c¢) a(t) =type of earthquake record
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An earthquake record contains many frequencies. @ also has many natural
frequencies. It will therefore select those freques with which it can resonate and respond
vigorously in those frequencies. In a record, whiepresent the response of the structure,
say, a record obtained at the crest of the dampitb@ominant frequencies will be those of
the structure. However, the predominant frequenicyhe earthquake record will also be
maintained at the same time.

The response shows that the acceleration changds height and in time. The peak
accelerations at different heights occurs at dffiertimes and in different directions. The
accelerations vary rapidly with time, the peak eallasting for only a fraction of a second.
These values may occur only once or twice duriegwhole earthquake. See Ambraseys and
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AVERAGE SEISMIC COEFFICIENT k,

Because the peak accelerations in the dam may atcdifferent times and may be in
different directions, the use of the peak accedlanatin design would produce conservative
result. We have therefore developed the concefheofiverage acceleration. The averaging
process requires a pre-defined possible slip sewrfac

Average seismic acceleration as a function of thkgé) is defined as the total inertia force
on the mass contained within the slip surface aedree surface divided by the total mass.

Aq(t) = Total Inertia force(t)/Total mass

The average seismic coefficiegy, is defined as



EU:M = maximum average acceleration/ maximum groundlacation (3)

|a

max

The average seismic coefficient may be expressea faaction of the maximum ground
acceleration as shown here or as a fraction ofityrav

Average Acceleration

A function of time, slip surface, dam periog T
and base acceleration a(t)

16

Figure 4

It is therefore necessary to pre-define a posshtesurface. This does not mean that the
actual sliding surface will be the one defined héreis surface will be representative of
many similar ones.

a) One parameter sliding wedge ( see figure 5)Asdys and Sarma (1967)

\ y=0
oH
/ Q
/] =
S °
\ v
Yv
Response accel erati on al t .
at any given tine t (t) Figure 5
U(y, t)

In this kind of wedgeg becomes the parameter defining the slip surfakbe.pbsition of the
point O becomes immaterial.



Ac() ="

T 0) dm
(4)
| dm

0

(Note that the one parameter wedge may represent mg different slip surfaces
approximately)

AVERAGE SEISMIC COEFFICIENT SPECTRA

MAGNIFICATION SPECTRUM FOR 10% DAMPING (m=0, R=0}
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Dichotomous third order regression equation offtine
2 3
k=1+aT+aT +aTfor T<T, (5)
2 3 2 3
k=1l+aT.+aT. +a T, +a,(T-T,) +a(T-T,) +aT-T,) for T=T, (6)

has been fitted to the seismic coefficient speeifegre :

*T is the fundamental period of the dam

T is a ‘critical period’ chosen so as to minimize tiesidual of the regression. For almost

all casesI' .= 0.4sec gives the optimum solution and this valudésefore adopted.

Table 1
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y/h al a2 a3 a4 ab a6 St. Dev.
(x10e-4)
0.2 20.786 -69.728 71.234 -2.402 1.09 -0.196 0.642
0.4 18.649 -69.875 72.992 -2.394 148 -0.359 0.404
0.6 15.465 -65.174 72.931 -1.967 1.341 -0.35 0.377
0.8 11.228 -51.408 60.093 -1.591 1.108 -0.291 0.159
1 6.979 -35.71 43.768 -1.213 0.849 -0.223 0.092

Figure (6) shows the average seismic coefficiemtbe used in design from one parameter
sliding wedge. These are obtained as the mearvefaestrong motion records.

The figure shows that seismic coefficients for slipfaces towards the top of the dam are
generally higher. Therefore, if a cross sectiodasigned for a factor of safety greater than
one for a toe slip, the section may not have sefiiicfactor of safety towards the top of the
dam because of the increased acceleration.

B) RESISTANCE

The resistance of the slope against the inertiaeralong with the static forces can be
defined by the critical acceleration or the facbsafety of the slope.

CRITICAL ACCELERATIONK O:

Critical acceleration is defined as that acceleratvhich when applied on the sliding mass
produces a condition of limiting equilibrium. Thecaleration in this case is horizontal. In

this context, the factor of safety is defined as factor by which the soil strength parameters
are to be reduced to produce a condition of limgigquilibrium. Limiting equilibrium implies

a factor of safety of one.

We may adopt any stability analysis methods fas thirpose. However, the aim is to find the
critical acceleration and not the factor of safétythis context, Sarma(1973) method is most
appropriate since it determines the critical acegiens directly. A better method is
Sarma(1979) method with inclined slices.Sarma (13f/%s a set of relationships for the
critical acceleration factor kfor simple homogeneous slopes of different ind¢lores and
different strengths. An enhanced limit equilibritechnique is recently developed which
uses the acceptability criterion as a starting fpand determines both the critical surface and
the critical acceleration at the same time. See&&rTan (2006) and Tan &Sarma (2008).

For seismic stability analysis, the strength patenseto be used are those that refer to the
dynamic (cyclic) undrained condition. We may uséaltcstrength parameters (strength

determined from appropriate laboratory tests) deotive stress parameters includingpre-

seismic pore pressures and dynamic pore wateryseepsrameters (again determined from
appropriate laboratory tests).



Seismic Slope Safety Assessment
Pore water Pressure

Hydrostatic and Pressure due to flow

PhreaticLine

| el

Hydrostatic

EquipotentislL.ine

Pore water pressures under static (non-seismic)
conditions.

The excess pore pressures due to seismic loadihdepiend on many factors. It depends
the level of loading and the number of cycles, igegs slowly after the rthquake and the
dissipation depends on the permeability of the. $oithis case, slopes may fail some ti
after the earthquake.

The critical acceleration for cnfinite slope can be determined easily as shown in equz
16 later.

Results for critical acceleration kg ,Sarma(1999)(Determined from log-spiral slip

surfaces)

Ke= Keo + [C/(YH)] fc (7)
Kco = (1-1y) tan(@-B) — rutan B (8
fe=a.tang@g + b 10)
a=-ptan’B+gatanP +ra (11)
b=g,tanp +rp (12)
ry=u/yh (13)
u= pore pressure and
yh= over burden pressuae a poi nt
Table 2
rvc/ yd P. . ra q, ry
0
0.025 -7.2719 3.4739 2.2959 9.7347 0.8386
0.05 -6.8671 3.1763 1.679 8.1369 0.6444
0 0.1 -4.7764 1.6411 1.3844 6.6296 0.5272
0.025 -6.5929 3.1774 21229 9.3458 0.7807
0.05 -5.8664 2.5665 1.6102 7.9287 0.5898
04 0.1 -4.1681 1.3018 1.3069 6.6086 0.4742
0.025 -6.8318 3.4838 1.8372 89259 0.6832
0.05 -4.9198 1.9128 15311 7.6775 0.526
0.1 -4.0763 1.3315 1.1502 6.5747 0.4098
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Critical accelerations are determined for slip sces at different heights and the criti
surfaces found (defined as the surface with minimentical acceleration). The critic
accelerations are then compared with the averagamigecoefficients. If the critica
accelerations are bigger than the average seismeftiadents, the slip surface has a facto
safety greater than one. Factor of safety less tmenis implied when the average seis
coefficients are bigger than the ical. In this case, it is possible that the madé slide on
the slip surface.

C) CONSEQUENCES OF FAILURE

Since the instantaneous acceleration during ahaake may be large enough to reduce
factor of safety to below one, surfaces of disaarnty (slip surface) may be produced ¢
displacements may occur along such slip surfades displacements of the sliding mass r
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be roughly estimated by using the sliding block elodrhis idea was promulgated by
Newmark (1965)

SLIDING BLOCK ANALYSIS:

From the stability analysis, we can determine threnal and shear forces on the slip surface.

Figure 7

ZN = Vector sum of all N forces

>T = Vector sum of all T forces
3= Equivalent Inclination of the Plane

When the factor of safety is less than one, wethsesliding block analysis. In this case, we
assume that the mass rests on an equivalent idgila@e surface. The equivalent inclination
is found from the limiting equilibrium conditioniglure 7.

There are more complex sliding mechanism in therdture,e.g. Sarma (1981), Ling
&Leshchinsky (1995), Ambraseys andSrbulov (1995),tantatopoulos (1996),
Sarma&Chlimintzas (2001). Comparison of displacameomputed with complex sliding
mechanism shows that for relatively small displagets, the single block sliding gives
reasonable good approximations. For large displacésn the single block sliding gives
conservative results. See Chlimintzas (2003).

SLIDING BLOCK MECHANISM [Newmark (1965) model]

Figure 8

Figure 8 shows an equivalent sliding block. Theaststrength parametrs ¢’ agtare such
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that the critical acceleration.k is the same for the sliding block as in the asedyslip
surface as shown in figure 7.

D = Driving force down the slope

R = Resisting Shear force up the slope

U = Force due to pore water pressure on the block

L = Length of the block.
D =W (sinf + k cosp) (14)
R = [ W(cosp - k sinp) -U] tang+ c’'L (15)

At the critical stage, when factor of safety equate, D = R, which gives kzk critical
acceleration factor.

sing' U+ cos¢’ cL

TP oty By oty H) W (o)
If k <kcthen the factor of safety# 1 and
_ [cos,_B-k sinB] tang' U tan¢’ +£ (17)
sinf+k cospf D D
If we write  tan i =k, then
E. tang’ U tan¢g' cos N cL cos (18)

Ttan(B+ i) Wsi(B+ i) W sin(g+ i)
This shows that the application of a pseudo-staticizontal load (kW) is equivalent to
tilting the base of the slope by an angle i where

i = tan*(k) (19)
If k >k, then the factor of safety® 1 and there is a net driving force acting onrtteess

down the slope in which case, the mass must aetelen the direction of the net force
(Newton’s Second Law) which gives:

m %=D-R= W 08¢ - B g (20)
cosy
where x = Relative displacement of the blockhweéspect to the base.

This formulation assumes that. kemains unchanged during the movement. In the
displacement analysis for a non-planar failurefesi@, use the critical acceleration as
determined from the stability analysis and do meabmpute from the sliding block model. It
may be necessary to derive an equivadgiveighted average value over the slip surface).
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accek Btian

Figure 9

Since k is a function of time [=(t) for the average seismic accelerati see figure 9, the
equation can be integrated to obtain the maximwsplacement ,,, We can safely assur

that the block does not move upwi

Figure 1@ives the displacement of the block as a functibik/ky,. The figure gives th

solutions for k(t) as:

a) Rectangular puld&ee the graphical and analytical solution latdigare 11

b) Half-sine pulse(See Sarma 197
c) Triangular puls¢See Sarma 197

d) Many earthquake records. For these recordspiiesents the predominant per
of the record. For a recd, representing the response of the dam, the priedon
period is likely to be the fundamental period o€ tdam. Since the record al
contains the information about the predominantqaenf the original record, it |
difficult to guess which of theswo will predominate. It is therefore conservatiee

use the longer one of the two predominant peri

From the study of the many different records, tieWwing equation holds good for practic

purposes.

a) log 4%/(CkngT?) = 1.07-3.83 kc/km

_cog¢ - B)
¢ cosg

There are other formulae as v

where

b) log{xm(cm)}= 2.3-33 kc/km

c) log{Xn(cm)}= 0.90 + log [(1-Ke/Km) *** ( Ke/km) ™
(23)

Sarma (1988) (21)

Ambraseys(197: (22)

Ambraseys& Menu(1988)
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Sliding block displacements
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(After Sarma 1975) Figure 10

Sarma&Kourkoulis (2004) studied many strong motimectords to find the dominant
parameters of these records which control the tiagutlisplacements. The variability of the
computed displacements at any level of thk.kratio is high. See figure 10.

Factors affecting Displacements are:
K/km ratio
Km OF Viax
Duration of acceleration pulses
Number of pulses
And also,
- Change of strength parameters due to displacement
- Change of the geometry of the slide
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"One-way" displacements for strong motion
and response records
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Figure 11 After Sarma&Kourkoulis (200

Normalised displacement as a function of
the acceleration ratio
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Figure 12 After Sarma&Kourkoulis(200:
Sarma&Kourkoulis (2004) shows how other paramedéfect thedisplacement

Sarma&Chlimintzas (2001) produced a multiblockislgdmode, figure 13, which takes into
account the change of geometry of the sliding ndassng movements and how it affects
displacements. Their results show that for smalbldicenents, simple sliding block model
sufficientbut for very large displacements, the simple moa&y be unconservativ
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Figure 13, After Sarma&Chlimintzas (2001)

Effect of vertical Acceleration:

In the limit equilibrium analysis, vertical accedéipnk,g can be taken care of simply by
increasing the unit weight of materials includihgttof water by the factor (13k where
vertical acceleration is considered positive upw(ardrtia force is positive downward). In
this case, the horizontal acceleration is redugetthé same factor to determine the factor of
safety. Alternatively, the critical horizontal ata@tion determined with the modified weight
is increased by the same factor to determine tleehtorizontal critical acceleration.

For cohesive soils, the net effect is small. Fdresionless soil, negative vertical inertia load
will always reduce the critical horizontal accetera.

Even though the factor of safety is affected bywbsical acceleration slightly, the net effect

on seismic displacements is very small and theeefor practical purposes, vertical
acceleration can be ignored. See Sarma& Score®j200

Hydrodynamic pressures
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When there is external free water in a slope asraservoir, there will be hydrodynamic
pressures. This acts in a direction normal to kygesand always towards the direction of the
inertia force. This is therefore always detrimembalthe slope. This pressure is highest when
the slope face is vertical and reduces for fladtepes.

ol ‘MYD&\L’MC Pressure Coefficient ¢
0 01 02 03 04 05 06 07 0.8

0Illlllllllllll!IT_III1IIIIIIIIIIIIIIIII

[ Pwd 7 CHYma

0.1 | : : - | Pwd = Hydrodynamic pressure
]

" | y = Distance below surface

0.2 bRt —
| H= Total reservoir depth
o= Seismic acceleration as a fraction of g
0.3 | » - & N s SRR
| 8= Inclination of the Dam face with the vertical
0.4 | AN NN L
o5 1\ | NN LN
E L
>

0.6 |- | 1 | A4 Nl
0.7 — . | - _

\ _75° | 60° | 48°
0.8 | ,",' _
0.9 |- ! - -1 % EN—

1
Note: The pressure acts normal to the face of the dam
Figure : Values of pressure Coefficients
[After Zangar & Haefeli (1952)]
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(This is a reading list and not all papers arerretein the text.)
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